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This paper studies discretely uniform approximation of continuous functions and
the associated discrete limit spaces. In particular, those conditions are established
which must be satisfied in order that discretely uniform convergence exist and be
surjective and that the corresponding limit space be a metric discrete limit space.
Further, discretely uniform convergence is characterized by discretely continuous
convergence. These results are applied to spaces of continuous functions defined
on subsets of ~n and of continuous functionals defined on subspaces of a reflexive
Banach space. This theory is of interest in connection with Galcrkin approxima
tions, finite element methods and singular perturbations in Banach spaces.

Discretely uniform approximation of continuous functions plays an
important role in approximation methods of numerical analysis. This paper
studies the associated discrete limit spaces. Using the concepts of limit
superior and limit inferior of sequences of sets G, G" (fc I (cf. [4, VII
Section 5]), we shall investigate the conditions which must be satisfied in
order that discretely uniform convergence exist and be surjective and that the
associated limit space be a metric discrete limit space. Of particular interest in
applications is the characterization of discretely uniform convergence by
discretely continuous convergence. The first application of our results deals
with spaces of continuous functions defined on subsets of the n-dimensional
Euclidean space ~n. In the case of compact metric spaces, the condition
Lim G, = G can be characterized by means of the Hausdorff distance d in the
form d(G, GJ -->- 0 (l E I) (cf. Section 4). Finally, we apply the following
theory to the approximation of subspaces in a reflexive Banach space. In this
way, we are able to generalize results in [8] for Hilbert spaces to Banach
spaces. Our results will then confirm that the spaces of continuous linear
functionals defined on these subspaces constitute metric discrete approxi
mations. The results are of great interest in the theories of Galerkin approxi-
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mations, finite element methods and singular perturbations in Banach
spaces, This paper has been written while the author was a guest of the
Mathematical Institute of Aarhus University (cf. [10]).

I. DISCRETELY UNIFORM ApPROXIMATION

Let us assume that M is a normal Hausdorff space. Let II< denote either the
real or the complex number field. Given a sequence of nonvoid subsets
G, G" LEI, of M, then let C(M) denote the Banach space with the supremum
norm of bounded continuous II<-valued functions on M, and similarly let
C(G), C(GJ denote the Banach spaces of bounded continuous II<-valued
functions on G, G, , L E J. For the sake of notational simplicity, we shall use
the same symbol II ' Ii to denote the norms of all these spaces: thus

, u, II = sup luJx)i,
a'EG L

LEI.

The discretely ull!form approximatioll "lim" is a binary relation between
sequences (u,) EII,C(G,) and functions U E C(G), defined by

(uJ "lim" /I 'c;. chi E C(M): uG = U, sup uJx) --- u(x): --+ 0 (L E l).
,j'EG L

The relation '"lim" has the basic property that for any continuous function
L' E C(1t'/) the sequence of restrictions 1"e, ,.= v i G, " L E J, and the restriction
l'e; = u i G satisfy ,

\h E C(M): (I'e;) "lim" I'e;.

The relation "lim" is said to be functional if

(I)

(uJ "lim" u and (uJ "lim" v => u ,~ l',

for every u, v E C(G), and every sequence (u,) E II,C(G J In this case, the
discretely un(form convergence lim exists, and is

lim u, = u -¢>- (uJ "lim" u,

for all continuous functions u E C(G), u, E C(G), L E 1. By virtue of (I), the
discretely uniform convergence lim has the property

"Iv E C(M): lim vG,= I'G' (2)

In particular, for v = 0 the sequence of trivial functions 0, E C(GJ, 0 E C(G),
LEI, satisfies lim 0, = O.
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In the case that "lim" is functional, the triple CCG), 11,C(G,j, lim constitutes
a discrete linlit space (c1'. [9, II ]). This space is said to be a metric discrete
limit space if the following condition

lim II o lim II, liml' . 1M)

holds for every pair of sequences II, , 1", 'Cc C(G,). LEI, such that (II,) or (I' )
converges discretely uniformly. If. additionally, the mapping lim is surjective.
the space C(G), l{C(G,), lim is said to be a metric discrete approximation.
The triple C(G), fl,e(G,), lim is said to be a metric discrete limit space with
discretely convergent metrics if the condition (M) is valid and the rclation

1I, lim 1', lim II, -- I" 11-- I' . ,

IS true for every pair of discretely uniformly convergent sequences II"

1\ E C(GJ, ,c= 1.

2. CONVERGENCE OF SEQUENCES OF SETS

In this section, we establish and characterize the requirements (GO), (GI),
(G2) for the sequence G, G" Lei, which will be used in the study of the
discretely uniform convergence lim and the associated discrete limit space
C(G), fl,C(G,), lim. An essential tool in the following proofs is the well-known
lemma of Urysohn and the theorem of Tietze (c1'. Alexandroff-Hopf
[I, I-Section 6]; Kuratowski [5, Section 14]).

Let G, G, , 1 r=. 1, be an arbitrary sequence of nonvoid subsets of the normal
Hausdorff space M. The (closed) limit sllperior (cf. Hausdorff [4, VlI
Section 5] of the sequence (G,), denoted by Lim sup G" is the set of all
points x in M with the property: for every open neighborhood 0 of x there
exists a subsequence l' of 1 such that 0 n G, c/ for all LEI'. The (closed)
limit i/(j'erior of the sequence (G,), denoted by Lim inf G" is the set of all
points x in /1,[ with the property: for every neighborhood 0 of x there exists
an index v E I such that 0 n G, for all, - v" ( 1. Finally, the sequence
of sets (G,) is said to converge to the set G, the limit of (G.). if

Lim inf G, Lim sup G, G.

We write Lim G, c= G if and only if the sequence (G,) converges to G.

(3) The condition
G C Lim sup G,

is equivalent to the statement

(GO)

VI' F.c C(M): II"G II (GO')
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Proof (i) Let v be any function in C(M) and let x be any point in G.
Since r is continuous, there exists, for every E > 0, an open neighborhood 0
of .cr such that I vex) -- rex')' <~ E whenever x' e O. In view of (GO), there
exist a subsequence l' of 1 and points x, eOn G" [(' 1'. Hence: r(x):

1\;, -c. E for all [e l' and thus I dx) lim sup II vc, E, x E G. Conse-
quently, for every E 0, we have II Vc; lim sup rc;f E which entails
(GO).

(ii) If (GO) is not true, there exists a point Z E G which does not belong
to Lim sup G, . Thus there exist an open neighborhood 0 of z and an index
vEl such that 0 n G, for all I v, [e I. The lemma of Urysohn
implies the existence of a real continuous function II' E C(M) having the
properties 11' ! {z} = I, II' I G0 =c °and ° II' 1. This function 11' satisfies

I1'c I as well as wc, = °for all [ JI and hence lim sup wc, = 0,
which contradicts (GO').

For brevity, denote by (GI) the following statement concerning G, G"
lEN.

(G1) For every open neighborhood 0 ofG there exists an index j/ E I with
the property that G, CO for all [ JI, I E!.

It is clear that this condition is trivially fulfilled when C, C G, I E l. The
above permits the following characterization.

(4) The condition (G I) is equivalent to the statement

VI' e C(M): lim sup vc, Vr; I· (Gl f
)

Prool (i) Let v be an arbitrary function in C(M). For every E > °let

0E {x E Mit vex)! < Vc -+ E}.

Obviously 0E is an open neighborhood of G. Using condition (GI), there
exists an index Ji e I such that C, C 0E and thus I v(x)1 < 'I Vr; II + E whenever

v and x e G,. Hence II vc, II I' l'c I! + E, [ v, and also lim sup I' vc, II ~
Vc E for every E > 0, which proves (G I f).

(ii) If (G1) does not hold, there exist an open neighborhood 0 of G and
a subsequence I' of I such that C, n G0 =1=25 for all IE r. Since
G n G0 == 0, from the lemma of Urysohn one obtains a real continuous
function II' e C(M) such that 11' I G = 0, II' I GO = I and °~ W ~ 1. In this
case Ii Wc II = 0, but II wr;, II = 1, I eI', so that lim sup II wc, I = 1. Hence
(G1f) is not valid.
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The following theorem establishes an important characterization 01

condition (G I) by the limit superior of the sequence (0',). Here we make usc
of the interesting representation (cf. Hausdorff [4, p. 237])

Lim sup G nUG,. i ~,
\-1

(6) Condition (G I) implies that Lim sup (/ C (,. 1/ AI is compact, these
tH'O conditions are equivalent,

(GJ) Lim sup G, C (;.

Prool (i) Assuming the first statement were not true, then there exists
a point x E Lim sup G, n GG. Since AI is a Hausdorff space, the set {xi is
closed. The space M is normal and {x: () G so that there exist disjoint
open sets 0 0 , 0 1 such thatix] COo • Dc °1 , Condition (G I) implies the
existence of an index jJ I such that G, C 0 1 C G0 0 whenever L 1'. But.
since x (, Lim sup G" there exists a subsequence l' such that 0 0 () 0'
L E r. which contradicts 0', C G0 0 , L i',

(ii) Let now /v! be compact, let Lim sup G, C C and let 0 be an
arbitrary open neighborhood of G. The limit superior has the representation

(5),

U (i,. K /.

Here S, C SI( for 1 K, so (S,J is a decreasing sequence of closed sets and
nS" C 0. Since /1'1 is compact, there exists an index J' (' I with the property

G,CUG, I'.

Finally, we want to characterize a condition for the limit inferior of the
sequence (0',).

(7) The condition

0' C Lim inf0'"

is equivalent to the statement

(G2)

VI'EC(M): I'G lim inf! I'G, (G2')

Proof (i) Let u be an arbitrary function in elM) and let x be an
arbitrary point in 0'. Since v is continuous, there exists, for every E 0, an
open neighborhood 0 of x such that! v(x) l'(x')! < E for all x' E O. Using
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condition (G2), we obtain an index v E f and points x, F 0 n G, for all L II,

l E J. Hence ! vex) II ve, + £0 for all L v and thus ! v(x)i
lim inf 1'(;, -'- £0, X E G. This implies, for every £0 0, the relation

1'(, lim inf L'G, I, -, £0 and thus (G2').

(ii) If(G2) does not hold, then there exists a pointz E G n GLim infG,.
Hence there exist an open neighborhood 0 of x and a subsequence]' of [
such that 0 n G, or G, eGo for all L '= 1'. From the lemma of Urysohn
it follows that there exists a real continuous function II' E C(JI,J) with the
properties IV ! {z} ~~ I, II' i GOO and 0 'S;; w 1. Using this function 11',

we have We; 1 and II 11'(;, = 0, l co]', so that (G2') is not true.

3. DISCRETELY UNIFORM LIMIT SPACES

We are now in a position to establish the fundamental theorems concerning
discretely uniform convergence. As in the preceding section, let G, G, , LEI,
be an arbitrary sequence of nonvoid subsets of the normal Hausdorff space Af.

(8) If G is closed, there exists for every continuous fimction u EO C(G) an
extension UE C(M) with the property

(9)

so that the discretely uniform approximation "lim" is surjective.

Proof If G is closed, for every real-valued function u '= C(G) the
extension theorem of Tietze implies the existence of a continuous extension
ii,= C(M) such that ue .c·= u. If u'= C(G) is complex-valued, therc exist
extensions URe , Ulm of the real and imaginary parts URe , Ulm of u, defined by
u(x).= URe(X) + iUlm(X), X E G. On setting U = URe + iUlm we obtain an
extension with the property z1e == u. It is clear that in either case the relation
(aG ) "lim" U holds.,

(10) The discretely un({orm convergence lim exists and C(G), JI,C(GJ,
lim is a discrete limit space if and only if the condition (GO) holds. Under the
additional assumption that G is closed, the discretely uniform convergence lim
is surjective.

Proof. We first prove that under the assumption (GO) the relation "lim"
is functional. For every (uJ, u and (uJ, v which satisfy the relation "lim",
there are functions a, v EO C(M) with the property aI G = u, v I G = v and

0,
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Hence the function w
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u - V E C(M) satisfies

({Cif. VCi~ (L C I).

The condition (GO) implies (GO') so that We, 0 or II - v iic; O.
Finally, if G is closed, we obtain from theorem (8) that lim is surjective.

(ii) Conversely, (GO) is a necessary condition. For if (GO) is not true,
there exist a point z ICC G, an open neighborhood 0 of z and an index v c I
such that 0 n G, for all L v, 1 C I. The lemma of Urysohn assures
the existence of a real continuous function w with the properties w i [z) L
wiG 0 ~~ 0 and 0 w 1. Hence \1'(" 0 for all L vand

o. o.

Consequently, (we; ), Or. as well as (we;), We; satisfy the relation "lim", but
Oe =F We so that "lim" cannot be functional.

We now come to the main result of this section.

(II) The discretely uniform convergence lim exists and C(G), lJ,C(G,),
lim constitutes a metric discrete limit space if and only if the conditions (GO),
(G I) are valid. Under these conditions, the discretely uniform convergence is
equivalent to the following relation

lim u,. ~= U .;? sup 1uJx) - t/(x) I --+ 0
:l'EG t

(L L /), ( 12)

for every sequence oj' continuousfimctions u E C(G), U, E C(G,), 1 E f, amI for
an arbitrary extension 11 E C(M) of u such that ii I G u.

Prool (i) Suppose (GO), (Gl) be valid. From theorem (10) we obtain
that the discretely uniform convergence lim exists and that C(G), II,C(G,),
lim is a discrete limit space. Let (u,), (v,J EJI,C(G,) be any pair of sequences
such that (u,) or (1',) is discretely uniformly convergent. Assume, for instance,
(u,) converges to u. In this case, there exists a function ii E C(M) with the
property 11(; == u and lim 1111, - lie; = O. If lim!1 11,- v, == 0, then we
have '

(L E 1),

so that (v,) is discretely uniformly convergent and lim II, ~.'. lim 1\.

Conversely, if (II,) and (1',) are discretely uniformly convergent to lim u, ==

lim v, , there exist functions ii, vE C(M) such that lie,. ve u and
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Hence II' = Lt - V E C(M) and We = O. By Theorem (4), the condition (GI')
is valid. Consequently, it follows that lim wc, II O. Hence

(, fCC l).

This shows that the condition (M) is valid and so C(G), II,C(GJ, lim is a
metric discrete limit space. Finally, let (uJ be any discretely uniformly
convergent sequence and let lim u, = u. Then there exists a function v fCC C(M)
such that Vc = u and lim II u, - vc . i O. Let iJ fCC C(M) be an arbitrary
extension of u = ue . On setting w ~ .. U - v and using condition (G I'), it
follows that

(L C I),

which entails (12).

(ii) Conversely, if "lim" is functional, Theorem (J 0) ensures the validity
of condition (GO). For every v fCC C(M), the sequence (ve) is discretely
uniformly convergent to lim De, = Ve . In particular, we havd lim 0, O. If
C(G), II,C(GJ, lim is a metric discrete limit space, we have, for every
pc C(M) such that Dc c= 0, the equivalence

lim Pc, ~= 0 <> lim Pc, I O.

For every open neighborhood 0 of G, the lemma of Urysohn affirms the
existence of a real continuous function w such that IV I G 0, w G0 I
and 0 II' 1. On setting v II' in the above equivalence, we see that
lim II'c C.C~ O. Hence there exists an index II E I such that I lI'(x)

II II'c, i <1 for all x fCC G, and all L ll, L fCC I. Consequently, G, CO for every
II which proves condition (G I).

By virtue of Theorems (3) and (4), the assumption in the above main
theorem permits the characterization

(GO) and (GI) 'ec' Vp fCC C(A!): lim sup Ill'e,!

When M is compact, one has the equivalence

(13)

(GO) and (GI) and G closed <c> Lim sup G, = G. (14)

Since every compact Hausdorff space is normal, we can state the following
corollary of Theorem (11).

(15) Let M be a compact Hausdori!' space and let G be closed. Then the
discretely uniform convergence lim exists and C(G), II,C(G,), lim constitutes
a metric discrete approximation If and only it' Lim sup G, = G.
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The condition (G2) implies the condition (GO). Using Theorems (4) and (7) ..
the following equivalence holds,

(G I) and (G2) <> Vc E C(M): lim rc;,. ( 16)

When AI is compact, we can further state the interesting characterization

(GI) and (G2) and G closed" Lim G, G. (! 7)

As one easily sees. this leads to the following theorem.

(18) Let;'vf he a cOlilpact Hausdorff space and let G he closed. 711en the
discretely uniform concergence lim exists and C(G), n,C(GJ, lim is a mctric
discrete limit space with discrete/r concergent metrics itand onli' itLim G, C;

Of particular interest in the applications of this theory is the relationship
between discretely uniform convergence and discretely continuous conver
gence of sequences of continuous functions. Every sequence of nonvoid
subsets G, G, C M, t fCC I, is formed into a discrete limit space G, IrG , lim\!
by the convergence lim'\[ of the topological space iii!. Every sequence of
IK-valued functions lie OG), II, C OGJ may be viewed as a sequence of
mappings II: G >- K II: G >- fr(, tel. If lim\!(Il,G" Ci) is surjective. the
discrete convergence II. >- II (t I) is deflned by the relation

limA! x,. == x;· lim u,(.\'''-= u(x).

for every sequence of points x E G, x, G" tel. Let us call this convergence
the discretelv continuous convergence. Then the following remarkable
statement holds.

(19) Let lim-HUl,e" G) he surjeClil'e. Then /he discretely Il/lifimn
convergence oi(u,) to u implies the discretely continuolls convergence o/(u,) to II.

If; in addition, M is sequential/r compact and Lim G, G. then tlte two
concergences arc equiralent.

Prool Ii) If lim'\!(I{G" e) is surjective, one has the rciation
e C Lim inf G, C Lim sup G, such that the conditions (GO) and (G2) are
valid. Hence the discretely uniform convergence exists. Let (uJ be discretely
uniformly convergent to 1I. Then there exists an extension uc C(;l.-f) of it [1(;

such that lim !, U,- llG O. For every convergent sequence of points x (, G,
x, c G, sueh that limM .~, x (I C I) it follows that lim u(x,) u(x). because
LI is continuous. Consequently,

1I,(X,) (I E I).
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(ii) Suppose, in addition, that M be sequentially compact and

LimCc=C. Then 1I,---+l/ (tEl) implies !lu,-uG,II---+O (tEl). Assume
this were not true. Then, for every extension U E C(M) of u = uG , there exist

an Eo 0, a subsequence]' of I and points z, E C, , tel, with the property

Since M is sequentially compact, there further exist a subsequence r of J',
and a point Z EM such that z, ---+ Z (t c" l") and hence Z E Lim sup C, C C. By
assumption, limM(Il,C, , C) is surjective so that one has a sequence of points
z,.' c C, , tEl, converging to z. On setting z, =~ ze', LEI r. we obtain an
extended sequence (z,) converging to z as well. The continuity of If implies
u(z,) -> u(z) (t E l) and the discretely continuous convergence of (11,) to u
implies uJz,) ---+ u(z) (t E l) which contradicts the above inequality.

4. ApPLICATIONS

The aim of this section is to illustrate the scope of our results by typical
examples.

EXAMPLE I. (i) Let M ~-= [ao , b,,] be a compact interval of the real line
and let I == (1,2,3, ... ) be the sequence of natural numbers. Let [a, b] be a
closed subinterval of [ao , bo] and let (tj , tz , t:l , ... ) be an infinite sequence of

numbers in [an, bol Let

C [a, b], J. 2.....

Then one easily shows that the following equivalences hold,

(GO) ~" [a, b] C Lim supft,]

and

<c> \It E [a, b] jJ' I: lim t, =
!-feZ'

(GI) <=~ Lim sup(tJ C [a, h]

<-->- a lim inf ", lim sup t, h.

However, condition (G2) or [a, b] C Lim inf{tJ cannot be satisfied when
a < h. If (GO), (GI) are true, the discretely uniform convergence has the
form

lI'~ I u/t,}- [fUJI ---+ 0
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for all sequences of numbers uJt,), L 1,2, ... , all functions u E C[a, b] and
any extension {j E C[ao, bo] such that a I [a, b] II.

(ii) Let M [ao , ho] and let G [a, b] as above. Now suppose (G,) be
specified by a sequence of finite partitions,

t ,.
1

for L 1, 2, ... such that

Then

h, max (ti.
J.' =1 ....• ,"'""

and

lim inf a,. a, h lim sup b,

(GI) Lim SUp{tl~ ..... t~,) C [a, h]

so that

". a lim inf a,. lim SLIp b, b

Finally.

(GO) and (GI) <> Lim SLlp{ttl .... , (v,: la, h]

;. lim inf a, a, lim sup b, b.

(GI) and (G2) <;. Lim{t,~ ,.... /\.,: [a, b]

·Iima, a, lim b, b.

EXAMPLE 2. (Cf. Caratheodory [2, pp. 172-182]). Let M be a compact
n-dimensional interval of the euclidean space Iffin. Let G. G,. L C J. be a
sequence of subsets of M such that Lim G, G and let II E C(G), u, E C(G,),
LET, be a sequence of bounded continuous functions. Then Theorem (19)
affirms the equivalence of the discretely uniform convergence

sup u,(x)- 11(x)! - .. 0
,c(i

where adenotes an arbitrary continuous extension of II. and of the discretely
continuous convergence

limJ'l"x, lim II,(X,) u(x).

for all sequences of points x E G, x, c G, . L J.
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EXAMPLE 3. Let M be a metric space with distance .,.! and let G, G, ,
t E J, be a sequence of nonvoid subsets of M. Then the limit superior and the
limit inferior of (G,) can be characterized by means of distances (cL
Kuratowski [5, Section 29]). In this way, we obtain

(GO) -¢c> G C Lim sup G,

",=> \:Ix E G: lim inf I x, G, I = 0
and

(G2) -¢? G C Lim inf G,

<-> \:Ix E G: lim sup I x, G, I = O.

Let us now assume M be compact and G be closed. Then one easily shows
that our conditions (Gl), (G2) assume the form

(GI) = Lim sup G, C G

= lim(sup ix" G i) ~c 0
;tLcG{

and
(G2) = G C Lim inf G,

= lim(sup I x, G, ,) O.
:l'EG

Finally, introduce the Hausdorff distance between sets (cf. Hausdorff
[4, p. 293]), defined by

dCA, B) = max(sup I x, B I, sup I y, A f)
,TE.4 !lEB

for subsets A, Be M. Then we obtain the characterization

Lim G, = G -¢? lim d(G, G,) = O.

EXAMPLE 4. Our results may be applied to the discretely uniform conver
gence of sequences of bounded linear functionals on continuously embedded
subspaces of a reflexive Banach space. In this way, we obtain very interesting
conditions which affirm that the dual spaces constitute metric discrete
approximations. These results extend those of Stummel [8] for the case of
Hilbert spaces.

Let E be a reflexive Banach space with norm II . 1110' Suppose given a
sequence F, F" tEl, of continuously embedded subspaces of E. That is
F, F, C E, tEl, as vector spaces and there is a sequence of norms II . I'F , II . liF
such that '

X IE = i! X ,IF, X E F,
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with some number p 1. The closed ball B,/'(O) of radius p and center 0 in E
is a compact topological space in the weak topology, that is the E'-topology
of E. Further B/(O) is weakly sequentially compact (cf. Dunford-Schwartz
[3, Chapter V]). A sequence (IIJ c ll,B,/'(O) converges to II in the weak
topology, if and only if

w-lim II, == II <c>. VI c E': I(IIJ -> I(u) ([ 1).

Further, let us denote by B/(O), Bi'(O), the closed unit balls in F resp. F,
for all [ c 1. By (20), we have that B1F(0), Bi'CO) C B/(O) and that B1F(0) is
closed. So let

Iv! G == BF,(O)
, 1 '

[E 1.

Given a sequence of continuous linear functionals I.'~:: F, r, c:: F,.', [c:: I,
we can obviously view these functionals as continuous functions v c:: C(B,F(O»,

v, c:: C(Bi'(O», [E I. Under the assumption

lv-Lim sup B~'(O) = B/(O),

we obtain from Corollary (15) that the discretely uniform convergence lim
exists and that this convergence is defined by

lim v, r :>, sup/ i v,{x,} - 7)(XJ; -+ 0
,J:" clIF( <-1

(c. I)

for any extension v of v such that v I F == v and, due to the theorem of
Hahn-Banach, VEE'. Obviously

sup I v,(x,) .- v(x,) I = sup . r,{lI,} .- 7)(u'}I/1 lI, iF,
II'Til!p

t
<1 o/U,~f'FL

so that

lim v, = v ¢> lim V,-' VF, O.

Moreover, under the assumption

we have that

limv, v => lim il v, , = II v
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Finally, let us apply Theorem (]9). Suppose, additionally, that

Then the discretely uniform convergence lim II v, ~ vF ' = 0 is equivalent
to the discretely continuous convergence, t

w-lim U t = U => lim vJuJ = du),

for every sequence of elements u E B]F(O), U t E B['(O), lEI.
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